metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.232D10, (C4×D5)⋊6Q8, C20⋊Q8⋊48C2, (C4×Q8)⋊11D5, C4.59(Q8×D5), (Q8×C20)⋊13C2, D10.1(C2×Q8), C4⋊C4.297D10, C20.117(C2×Q8), Dic5.2(C2×Q8), (D5×C42).6C2, (C4×Dic10)⋊39C2, C4.47(C4○D20), D10⋊Q8.5C2, (C2×Q8).177D10, C42⋊D5.4C2, Dic5⋊Q8⋊33C2, C20.117(C4○D4), C10.30(C22×Q8), (C2×C10).122C24, (C2×C20).499C23, (C4×C20).174C22, D10⋊3Q8.15C2, D10⋊2Q8.15C2, Dic5.10(C4○D4), Dic5.Q8⋊46C2, C4⋊Dic5.307C22, (Q8×C10).222C22, C22.143(C23×D5), C5⋊3(C23.37C23), (C4×Dic5).284C22, (C2×Dic5).226C23, (C22×D5).189C23, D10⋊C4.102C22, (C2×Dic10).299C22, C10.D4.155C22, C2.13(C2×Q8×D5), C2.30(D5×C4○D4), C2.61(C2×C4○D20), C10.54(C2×C4○D4), (C2×C4×D5).378C22, (C5×C4⋊C4).350C22, (C2×C4).584(C22×D5), SmallGroup(320,1250)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 670 in 222 conjugacy classes, 109 normal (43 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×14], C22, C22 [×4], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×15], Q8 [×8], C23, D5 [×2], C10 [×3], C42, C42 [×2], C42 [×5], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×13], C22×C4 [×3], C2×Q8, C2×Q8 [×3], Dic5 [×4], Dic5 [×5], C20 [×4], C20 [×5], D10 [×2], D10 [×2], C2×C10, C2×C42, C42⋊C2 [×2], C4×Q8, C4×Q8 [×3], C22⋊Q8 [×4], C42.C2 [×2], C4⋊Q8 [×2], Dic10 [×6], C4×D5 [×4], C4×D5 [×4], C2×Dic5 [×3], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5, C23.37C23, C4×Dic5 [×3], C4×Dic5 [×2], C10.D4 [×10], C4⋊Dic5, C4⋊Dic5 [×2], D10⋊C4 [×4], C4×C20, C4×C20 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10, C2×Dic10 [×2], C2×C4×D5 [×3], Q8×C10, C4×Dic10, C4×Dic10 [×2], D5×C42, C42⋊D5 [×2], C20⋊Q8, Dic5.Q8 [×2], D10⋊Q8 [×2], D10⋊2Q8, Dic5⋊Q8, D10⋊3Q8, Q8×C20, C42.232D10
Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×4], C24, D10 [×7], C22×Q8, C2×C4○D4 [×2], C22×D5 [×7], C23.37C23, C4○D20 [×2], Q8×D5 [×2], C23×D5, C2×C4○D20, C2×Q8×D5, D5×C4○D4, C42.232D10
Generators and relations
G = < a,b,c,d | a4=b4=1, c10=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, bc=cb, bd=db, dcd-1=b2c9 >
(1 116 11 106)(2 107 12 117)(3 118 13 108)(4 109 14 119)(5 120 15 110)(6 111 16 101)(7 102 17 112)(8 113 18 103)(9 104 19 114)(10 115 20 105)(21 44 31 54)(22 55 32 45)(23 46 33 56)(24 57 34 47)(25 48 35 58)(26 59 36 49)(27 50 37 60)(28 41 38 51)(29 52 39 42)(30 43 40 53)(61 125 71 135)(62 136 72 126)(63 127 73 137)(64 138 74 128)(65 129 75 139)(66 140 76 130)(67 131 77 121)(68 122 78 132)(69 133 79 123)(70 124 80 134)(81 143 91 153)(82 154 92 144)(83 145 93 155)(84 156 94 146)(85 147 95 157)(86 158 96 148)(87 149 97 159)(88 160 98 150)(89 151 99 141)(90 142 100 152)
(1 69 25 83)(2 70 26 84)(3 71 27 85)(4 72 28 86)(5 73 29 87)(6 74 30 88)(7 75 31 89)(8 76 32 90)(9 77 33 91)(10 78 34 92)(11 79 35 93)(12 80 36 94)(13 61 37 95)(14 62 38 96)(15 63 39 97)(16 64 40 98)(17 65 21 99)(18 66 22 100)(19 67 23 81)(20 68 24 82)(41 158 109 126)(42 159 110 127)(43 160 111 128)(44 141 112 129)(45 142 113 130)(46 143 114 131)(47 144 115 132)(48 145 116 133)(49 146 117 134)(50 147 118 135)(51 148 119 136)(52 149 120 137)(53 150 101 138)(54 151 102 139)(55 152 103 140)(56 153 104 121)(57 154 105 122)(58 155 106 123)(59 156 107 124)(60 157 108 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 35 24)(2 23 36 9)(3 8 37 22)(4 21 38 7)(5 6 39 40)(11 20 25 34)(12 33 26 19)(13 18 27 32)(14 31 28 17)(15 16 29 30)(41 102 119 44)(42 43 120 101)(45 118 103 60)(46 59 104 117)(47 116 105 58)(48 57 106 115)(49 114 107 56)(50 55 108 113)(51 112 109 54)(52 53 110 111)(61 66 85 90)(62 89 86 65)(63 64 87 88)(67 80 91 84)(68 83 92 79)(69 78 93 82)(70 81 94 77)(71 76 95 100)(72 99 96 75)(73 74 97 98)(121 134 143 156)(122 155 144 133)(123 132 145 154)(124 153 146 131)(125 130 147 152)(126 151 148 129)(127 128 149 150)(135 140 157 142)(136 141 158 139)(137 138 159 160)
G:=sub<Sym(160)| (1,116,11,106)(2,107,12,117)(3,118,13,108)(4,109,14,119)(5,120,15,110)(6,111,16,101)(7,102,17,112)(8,113,18,103)(9,104,19,114)(10,115,20,105)(21,44,31,54)(22,55,32,45)(23,46,33,56)(24,57,34,47)(25,48,35,58)(26,59,36,49)(27,50,37,60)(28,41,38,51)(29,52,39,42)(30,43,40,53)(61,125,71,135)(62,136,72,126)(63,127,73,137)(64,138,74,128)(65,129,75,139)(66,140,76,130)(67,131,77,121)(68,122,78,132)(69,133,79,123)(70,124,80,134)(81,143,91,153)(82,154,92,144)(83,145,93,155)(84,156,94,146)(85,147,95,157)(86,158,96,148)(87,149,97,159)(88,160,98,150)(89,151,99,141)(90,142,100,152), (1,69,25,83)(2,70,26,84)(3,71,27,85)(4,72,28,86)(5,73,29,87)(6,74,30,88)(7,75,31,89)(8,76,32,90)(9,77,33,91)(10,78,34,92)(11,79,35,93)(12,80,36,94)(13,61,37,95)(14,62,38,96)(15,63,39,97)(16,64,40,98)(17,65,21,99)(18,66,22,100)(19,67,23,81)(20,68,24,82)(41,158,109,126)(42,159,110,127)(43,160,111,128)(44,141,112,129)(45,142,113,130)(46,143,114,131)(47,144,115,132)(48,145,116,133)(49,146,117,134)(50,147,118,135)(51,148,119,136)(52,149,120,137)(53,150,101,138)(54,151,102,139)(55,152,103,140)(56,153,104,121)(57,154,105,122)(58,155,106,123)(59,156,107,124)(60,157,108,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,35,24)(2,23,36,9)(3,8,37,22)(4,21,38,7)(5,6,39,40)(11,20,25,34)(12,33,26,19)(13,18,27,32)(14,31,28,17)(15,16,29,30)(41,102,119,44)(42,43,120,101)(45,118,103,60)(46,59,104,117)(47,116,105,58)(48,57,106,115)(49,114,107,56)(50,55,108,113)(51,112,109,54)(52,53,110,111)(61,66,85,90)(62,89,86,65)(63,64,87,88)(67,80,91,84)(68,83,92,79)(69,78,93,82)(70,81,94,77)(71,76,95,100)(72,99,96,75)(73,74,97,98)(121,134,143,156)(122,155,144,133)(123,132,145,154)(124,153,146,131)(125,130,147,152)(126,151,148,129)(127,128,149,150)(135,140,157,142)(136,141,158,139)(137,138,159,160)>;
G:=Group( (1,116,11,106)(2,107,12,117)(3,118,13,108)(4,109,14,119)(5,120,15,110)(6,111,16,101)(7,102,17,112)(8,113,18,103)(9,104,19,114)(10,115,20,105)(21,44,31,54)(22,55,32,45)(23,46,33,56)(24,57,34,47)(25,48,35,58)(26,59,36,49)(27,50,37,60)(28,41,38,51)(29,52,39,42)(30,43,40,53)(61,125,71,135)(62,136,72,126)(63,127,73,137)(64,138,74,128)(65,129,75,139)(66,140,76,130)(67,131,77,121)(68,122,78,132)(69,133,79,123)(70,124,80,134)(81,143,91,153)(82,154,92,144)(83,145,93,155)(84,156,94,146)(85,147,95,157)(86,158,96,148)(87,149,97,159)(88,160,98,150)(89,151,99,141)(90,142,100,152), (1,69,25,83)(2,70,26,84)(3,71,27,85)(4,72,28,86)(5,73,29,87)(6,74,30,88)(7,75,31,89)(8,76,32,90)(9,77,33,91)(10,78,34,92)(11,79,35,93)(12,80,36,94)(13,61,37,95)(14,62,38,96)(15,63,39,97)(16,64,40,98)(17,65,21,99)(18,66,22,100)(19,67,23,81)(20,68,24,82)(41,158,109,126)(42,159,110,127)(43,160,111,128)(44,141,112,129)(45,142,113,130)(46,143,114,131)(47,144,115,132)(48,145,116,133)(49,146,117,134)(50,147,118,135)(51,148,119,136)(52,149,120,137)(53,150,101,138)(54,151,102,139)(55,152,103,140)(56,153,104,121)(57,154,105,122)(58,155,106,123)(59,156,107,124)(60,157,108,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,35,24)(2,23,36,9)(3,8,37,22)(4,21,38,7)(5,6,39,40)(11,20,25,34)(12,33,26,19)(13,18,27,32)(14,31,28,17)(15,16,29,30)(41,102,119,44)(42,43,120,101)(45,118,103,60)(46,59,104,117)(47,116,105,58)(48,57,106,115)(49,114,107,56)(50,55,108,113)(51,112,109,54)(52,53,110,111)(61,66,85,90)(62,89,86,65)(63,64,87,88)(67,80,91,84)(68,83,92,79)(69,78,93,82)(70,81,94,77)(71,76,95,100)(72,99,96,75)(73,74,97,98)(121,134,143,156)(122,155,144,133)(123,132,145,154)(124,153,146,131)(125,130,147,152)(126,151,148,129)(127,128,149,150)(135,140,157,142)(136,141,158,139)(137,138,159,160) );
G=PermutationGroup([(1,116,11,106),(2,107,12,117),(3,118,13,108),(4,109,14,119),(5,120,15,110),(6,111,16,101),(7,102,17,112),(8,113,18,103),(9,104,19,114),(10,115,20,105),(21,44,31,54),(22,55,32,45),(23,46,33,56),(24,57,34,47),(25,48,35,58),(26,59,36,49),(27,50,37,60),(28,41,38,51),(29,52,39,42),(30,43,40,53),(61,125,71,135),(62,136,72,126),(63,127,73,137),(64,138,74,128),(65,129,75,139),(66,140,76,130),(67,131,77,121),(68,122,78,132),(69,133,79,123),(70,124,80,134),(81,143,91,153),(82,154,92,144),(83,145,93,155),(84,156,94,146),(85,147,95,157),(86,158,96,148),(87,149,97,159),(88,160,98,150),(89,151,99,141),(90,142,100,152)], [(1,69,25,83),(2,70,26,84),(3,71,27,85),(4,72,28,86),(5,73,29,87),(6,74,30,88),(7,75,31,89),(8,76,32,90),(9,77,33,91),(10,78,34,92),(11,79,35,93),(12,80,36,94),(13,61,37,95),(14,62,38,96),(15,63,39,97),(16,64,40,98),(17,65,21,99),(18,66,22,100),(19,67,23,81),(20,68,24,82),(41,158,109,126),(42,159,110,127),(43,160,111,128),(44,141,112,129),(45,142,113,130),(46,143,114,131),(47,144,115,132),(48,145,116,133),(49,146,117,134),(50,147,118,135),(51,148,119,136),(52,149,120,137),(53,150,101,138),(54,151,102,139),(55,152,103,140),(56,153,104,121),(57,154,105,122),(58,155,106,123),(59,156,107,124),(60,157,108,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,35,24),(2,23,36,9),(3,8,37,22),(4,21,38,7),(5,6,39,40),(11,20,25,34),(12,33,26,19),(13,18,27,32),(14,31,28,17),(15,16,29,30),(41,102,119,44),(42,43,120,101),(45,118,103,60),(46,59,104,117),(47,116,105,58),(48,57,106,115),(49,114,107,56),(50,55,108,113),(51,112,109,54),(52,53,110,111),(61,66,85,90),(62,89,86,65),(63,64,87,88),(67,80,91,84),(68,83,92,79),(69,78,93,82),(70,81,94,77),(71,76,95,100),(72,99,96,75),(73,74,97,98),(121,134,143,156),(122,155,144,133),(123,132,145,154),(124,153,146,131),(125,130,147,152),(126,151,148,129),(127,128,149,150),(135,140,157,142),(136,141,158,139),(137,138,159,160)])
Matrix representation ►G ⊆ GL4(𝔽41) generated by
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 9 | 0 |
| 0 | 0 | 28 | 32 |
| 9 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 |
| 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 9 |
| 3 | 38 | 0 | 0 |
| 3 | 24 | 0 | 0 |
| 0 | 0 | 29 | 37 |
| 0 | 0 | 26 | 12 |
| 24 | 3 | 0 | 0 |
| 40 | 17 | 0 | 0 |
| 0 | 0 | 12 | 4 |
| 0 | 0 | 36 | 29 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,9,28,0,0,0,32],[9,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9],[3,3,0,0,38,24,0,0,0,0,29,26,0,0,37,12],[24,40,0,0,3,17,0,0,0,0,12,36,0,0,4,29] >;
68 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | ··· | 4R | 4S | 4T | 4U | 4V | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20H | 20I | ··· | 20AF |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 10 | 10 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
68 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | + | - | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | C4○D20 | Q8×D5 | D5×C4○D4 |
| kernel | C42.232D10 | C4×Dic10 | D5×C42 | C42⋊D5 | C20⋊Q8 | Dic5.Q8 | D10⋊Q8 | D10⋊2Q8 | Dic5⋊Q8 | D10⋊3Q8 | Q8×C20 | C4×D5 | C4×Q8 | Dic5 | C20 | C42 | C4⋊C4 | C2×Q8 | C4 | C4 | C2 |
| # reps | 1 | 3 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 2 | 4 | 4 | 6 | 6 | 2 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{232}D_{10} % in TeX
G:=Group("C4^2.232D10"); // GroupNames label
G:=SmallGroup(320,1250);
// by ID
G=gap.SmallGroup(320,1250);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,675,570,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=b^2*c^9>;
// generators/relations